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ELECTROMA GNETI C SCATTERING

This interim scientific report sumarizes the work carried out under the
Air Force Office of Scientific Research Grant No. 77-3188(A) during the year
ended 31 December 1977.

It has been a year of steady progress on several fronts. ~0ne of the major
efforts has been in connection with the desi gn of broadband absorbers to re-
duce the backscattering cross section of wing-like structures when illuminated
at close to edge-on incidence with magnetic vector parallel to the edge.c~~
Under a previous Air Force Contract it was shown that thin coatings could be
simulated using a surface impedance , and that the materials available could
produce a significant cross section reduction over broad aspect and frequency
ranges , but the time available did not permit the detailed analytical and
numerical investigation necessary to determine the maximum cross section re-
duction attainable.

Such an investigation has now been performed under the present Grant.
Using a 300 angle ogival cylinder with a maximum allowed value for the magni-
tude of the surface impedance , analyses and computations have been performed
to find the surface impedance profiles that are most effective in reducing the
backscattering cross Section for H polarization , with particular reference to
an aspect range ± 300 about edge-on . Analytical expressions for the fields
diffracted by the edge of a uniform impedance wedge and by a discontinuity in
the value or first derivative of an impedance on a plane surface were used to
specify the (local) surface impedance to minimize the direct scattering from
any singularity , as at the front and rear edges of the ogi val cylinder. Various
trial profiles were then constructed and used in conjunction with a computer
program for the direct di gital solution of the surface integral equations to
compute the resulting backscattered fields. From data obtained at a sequence

of closely spaced frequencies , It was found possible to separate the front
edge contribution from that of the rear edge and travel ing waves, and so choose

the Impedance to minimize each , thereby assur ing a broa dband performance . Cross
section reductions of more than 20 dB were achieved . The work has been written
up as a techn ica l repor t (SenIo r, 1977) which will be sent for approval of pub-
lication as soon as the drafting of the numerous figures is complete.
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Our general studies of the impedance boundary condition have also continued
with particular emphasis on its appli cation to bodies having edge and corners .
With some bodies the introduction of a non-zero surface impedance has a profound
effect on the character of the solution of the scattering problem , and a case in
point is a plane wave at skew incidence on an impedance wedge of open angle ir/2.
If the impedance of either surface of the wedge is zero or if the wave i~ inci-
dent in a plane perpendicular to the edge, the solution can be obta i ned using
Maliuzhinets ’ (1959) method or, more simply, by the method of images, and
consists of four plane waves: the primary and three reflected waves . However,
for skew incidence on a wedge both surfaces of which have non-zero impedances,
these same methods are applicable only if the (anisotropic) impedances satisfy
the compatibility relation of Dybdal et al (1971), and if this condition is not
satisfied , no method is available for the exact solution of the problem .
Nevertheless, it is possible to obtain a solution as a Taylor series in the
impedance 

~~
. As shown by Senior (1978), for arbitrary impedances the angular

spectrum is no longer discrete , and the solution contains an edge wave whose
amplitude is 0(~2) and whose form is similar to that of the Kottler edge wave
associated with a ‘black’ half plane .

In the area of low frequency scattering we have continued our numerical and
analytical investi gations of the general polarizability tensor R(t). Numerical
va l ues of the tensor elements have been obtained for rectangular dielectric
particles (Herrick and Senior, 1977) and the mathematical formulation has now
been appl ied to hexagonal crystals as well. As in the case of rectangular
particles , the tensor is diagonal and the integral equations which must be
solved to determine the tensor elements are singular only along the edges of
the crystal . This simplifies the numerical solution of the integral equations
by the moment method and again It is found that the kernels of the equations
can be integrated analytically over each sampling cell. A computer program has
been written to compute ~(-r ) for a hexagonal crystal for arbitrary values of
t and the ratio of the axial length to the cross section. However, analysis of

the numerical results is not yet complete . In order to compute the tensor
elements for lossy dielectric materials , modified programs have been written
which allow complex values of v.

2
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In addition to the numerical 
work, several aspects of the 

mathematical

formulation have been examined. 
The syTml*trY relations which 

were assumed

among the potential functiOnS 
(see for example (11) of Herrick 

and Senior , 1977)

have ~OW been proved 
analyticallY . It can be shown that the 

solutions of the

integral equations , I.e., the 
potentials on the surface of the 

body, are odd

(even) functions of the coordinate 
Xj if the inhomOgefle0I~ 

term is an odd (even)

function of x1 and the body is 
syimietriC about the pl ane x1 

= 0. We have al so

proved that, even for a body 
of arbitrary shape , the potential

s given by the

integral equationS satisfy the 
required zero induced charge 

conditIOn . In the

case of a syn~netriC body , such 
a proof can easily be 

constructed using the

syninetry of the potentials.

~Su or t~~ !u~~~~~ 0!~

D,F. HerriCk and T.B.A.Senior 
(1977), “LOW frequency ~catteriflg 

by rectang-

ular dielectric partic1eS”~ 
Appi . Phys . 13, 175-183.

T.B.A. Senior and H. Weil 
(1977), ~~~~~~~~~~~~~~~~ 

scattering and absor-

ption by thin_walled dielectric 
cylinders with application to 

ice

crystals”, Appi . Opt. 16, 
2979-2985.

T.B.A. Senior (1978), “Skew 
incidence on a ~jght_angled 

Impedance wedge” ,

accepted for publication In 
Radio Science; preprint 

enclosed .

T.B.A . Senior (1977), “Analyses 
pertaining to the reduction of 

non_specular

scattering” , University of 
Michigan Radiation LaboratorY 

Report No.

015224-1 -T.

Personnel

The Grant has provided 
partial salary support of the 

project dlrectot , a

graduate student (Mr . D .F. Herrick, whose work on low 
frequenCY scattering will

form his Ph.D. thesis), and 
two part-time prograflll*rS.
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~ / SKEW INCIDENCE ON A RIGHT-ANGLED IMPEDANCE WEDGE

T.B.A.  Senior
Radiation Laboratory

The University of Michigan
Ann Arbor , Michigan 48109

ABSTRACT

A problem which is relevant to propagation in a rectangular waveguide wi th

imperfectly conducting walls is a plane wave at skew incidence on a right-angled

wedge whose surfaces have non-zero impedances either scalar or tensor. The

solution is obtained as a power series in the impedance n through terms 0(n 2) .

Its properties are discussed and it is shown that unless an impedance compati-

bility relation is satisfied the solution contains an edge wave whose amplitude

is proportional to and whose form is similar to the wave emanating from the

edge of a ‘black’ half plane .
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INTRODUCTION

In the analysis of scattering problems the impedance boundary condition is

a va l ua b le tool for simu l ating the effects of surface imperfec ti ons i n the form

of finite conductivity (Senior, l959a) or roughness (Senior, 195gb) . The effects

are represented via a surface impedance , and the results have proved meaningful

even in the case of bodies having corners and edges. For some geometries the

scattering problem can now be solved using only a trivial extension of the method

applicable to the perfectly conducting (smooth) surface, but wi th others the

introduction of a non-zero impedance has a profound effect on the analysis and

the character of the solution itself. An example of the latter type is a plane

wave at skew inc id ence on an impedance wedge of open ang le it/2 .

If the impedance of either surface of the wedge is zero or if the wave is

incident in a plane perpendicular to the edge , the solution can be obtained

using Maliuzhinets ’ (1959) method or, more simply, by the method of images ,

and consists of four plane waves : the prima ry and three reflected waves . How-

ever , for skew incidence on a wedge both surfaces of which have non-zero im-

pedances , these same methods are appl i cable only if the (anisotropic) impedances

satisfy the compatibility relation of Dybdal et al (1971), and if this condition

is not satisfied , no method is available for the exact solution of the problem .

Nevertheless , It is possible to obtain a solution as a Taylor series in the

Impedance ,
~ 
and this is determined to 0(~

2). For arbitrary Impedances the

angular spectrum is no l onger discrete and the solution contains an edge wave

similar to that obtained by Kottler (1923) In his analysis of diffraction by a

‘black’ half plane . The resu1ts are relevant to propagation in a rectangular

wavegulde having two adjacent walls imperfectly conducting .
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FORMULAT I ON

In terms of the Cartesian coordinates (x, y, z) the equations of the two

faces of the wedge are y = 0, x > 0  and x = 0, y > 0  (see Figure 1). At each

face the impedance boundary condition

E - (n E)n = Z ~ 
. 

~ x

is imposed , where n is a unit vector outward normal , Z is the intrinsic impedance

of free space and ~ is an anisotropic (tensor) normalized impedance . On y 0

~~l
+ T

~2~~

and the boundary conditions are therefore

Ex 
= fi Z H~ Ez 

= - Z H,~ (1)

whereas on x 0

= fl~ ~~~ 
+ fl~ ~~

giving

E
~~~ _ n 3 Z H

~~ 
E
~~~ n4 Z H

~~
. (2)

The Incident field is a plane wave of arb itrary polarization incident in

a direction making an angle B with the negative z axis , wi th propagation vector

k • - k (
~ cos a COS 0 + y sin a C05 B + sin a)

3



where a time factor e
_
~
Wt has been assumed . Since the surfaces are i ndependent

of z, the total field will depend on z only through the factor ~~~~~~~ and

can be expressed in terms of the single component Hertz vectors

, n = z V (x, y) e k
~~~ 8I! = z U (x, y) ~~~~~~~ 

*

as

E
~~

= - i h -
~~

+ i  ~ ZH = - i h -~ - - i k -~~ 
k - ~~ , ax

+ ikE~~= _ i h 1’L _ i  ~ ZH = _ i h
ay ax ’~ 

k - ~~ y

E
~~

= x 2 U
~~ 

Z H
~~

= A
2 U .

U and V satisfy the scalar wave equation

(3)1~~
ay

and

h ks in ~~, x = k c o s~~

imp ly ing

+ A2 
= k2

The boundary conditions on U and V are then

aUh -
~~~~~ 

= [k -
~~~~ + if

1 A2) V h ~~~~- = - 1k + ~~ A~ 

‘

~ U (4)ax [ a y  r~ )

au aV Ik_ _
~~+~ t~. ~

2)u (5)h -
~~~~ 

= - [k -
~~

— + in A2) V , h = 

~ ax n4 jax 3

(Incidence In a plane perpendicular to the edge), ~ = n4 = 0 or =

on y = 0 and x 0 respectively, and serve to coupl e U and V unless h = 

04



To speci~fy the incident field we choose

U1 = A  e 1A
~~~ 

-s- ys) 
, V 1 

= B ~~~~~ 
+ ys) (6)

where a factor ~~~~~ 
+ wt) has been suppressed . A and B are arbitrary con-

stants and c = cos a, S = sin a. Since a plane wave cannot propagate parallel

to the surfaces , it is necessary to assume that c, s > 0 implying 0 < a <

and A $ 0. The task is to find the total (incident plus scattered) fields in

accordance with (6) and the boundary conditions (4) and (5).

PLANE WAVE SOLUTION

We first seek a plane wave solution in the form

- u = t~ ~~~~~ 
+ ys) 

~ A1 ~~~~~ 
- ys) 

+ A2 e~~~
’ - ys) 

+ A3 e~~
t
~
C + ys)

(7)

V = B e ’
~ 

+ ys) + B1 ~~~~~ 
- ys) 

+ B2 ~~~~~ 
- ys) + B3 ~~~~ 

+ ys)

(8)

as suggested by the image method . The last three terms in each of (7) and (8)

consti tute the scattered f ield , and the unknown amplitudes A
~ 

and 
~~ 

i = 1, 2, 3,

must be chosen to satisfy the boundary conditions (4) and (5). From the con-

di tions on y = 0

hc (A + A 1 ) 
= (ks - A~1 ) B 

- (ks + A~ 1
) B1 (9)

hc (A2 + A3) = - (ks - A~1
) B2 + (ks + An 1

) B3 
(10)

hc (B + B1 ) — (ks - A/n2) A4  (k5 + A/~2
) A 1 (11)

hc (82 
+ B3) 

= (ks - A/~2
) A2 - (ks + A/~2

) A
3 (12)

5
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Similarly, from the conditions on x = 0

hs (A + A2) 
= - (kc — A n

3
) B + (kc + A~3) 82 (13)

hs (A 1 + A3) 
= (kc - A~ 3 ) Bi - (kc + X~3) 63 (14)

hs (B + B2) = (kc - A/~4
) A - (kc + A/n4) A2 (15)

hs (B 1 + B3) = - ( kc - A/ ri
4
) A1 + (kc + A/ri4) A3 (16)

yielding a total of 8 equations for the 6 unknowns A~ an d B1. From (9) and

(11) A 1 and ~l 
can be expressed in terms of A and B:

rA1 = - {r - 2ks (ks + An i
1
)} A + 2 hksc B (17)

rB1 
= — 2 hksc A — (r— 2ks (ks + A/ n 2)} B (18)

where

r = h2 c2 + (ks + A~1 )(ks + A/~ 2) . (19)

In addition , from (13) and (15)

r ’ A2 
= — {r ’ - 2kc (kc + Ar1

3
)} A - 2  hksc B (20)

r ’ B2 = 2 hksc A - {r ’ - 2kc (kc + A/~4),} B (21)

where

= h2 S2 + (kc + xn3)( kc + A/~4) (22)

completing the specification of all the ampl i tudes save A3 and B3.

From (10) and (12), however , A3 and B3 can be expressed in terms of

A2 and 82, and using then (20) and (21), we have

rr ’ A 3 [fr - 2ks (ks + Ani 1 )}{r’ - 2kc (kc + An 3)) - 4 h
2k2s2c2JA

+ 2 hksc [r - 2ks (ks + A~1 ) + r ’ - 2kc (kc + A/ri4 ) JB  (23)
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rr ’ 83 = - 2 hksc [r - 2ks (ks + A/ri
2
) + r ’ - 2kc (kc +

- 2ks (ks + A/ri
2
)}fF ’ - 2kc (kc + A/~4) )  - 4 h2k2s2c2).

(24)

Also , from (14) and (16) wi th (17) and (18)

rr ’ A3 = 
[r  

- 2ks (ks + An
1
)}{r ’ - 2kc (kc + A~ 3)}  - 4 h2k2s2c2~~A

- 2 hksc [r - 2ks (ks + A/~ 2) + r ’ - 2kc (kc + An 3)JB (25)

rr ’ B3 
= 2 hksc [r — 2ks (ks + A~ 1 ) 

+ r ’ — 2kc (kc +

+ [Cr - 2ks (ks + A/n2)}Cr ’ - 2kc (kc + A/ri4))  - 4 h2k2s2c2~~B

(26)

and the results are not necessaril y equivalent. Taking first the expressions

(23) and (25) for rr ’ A3, the coefficien ts of A are identical but those of

B can be written as

- 2 hksc [kA Cs (n 1 
- l/~2

) - c (n 3 - l f ~4 ) }  ~A2[~~ + -

(27)

with the upper and l ower signs for (23) and (25) respectively. Since

A , s, c ~ 0, the coefficients are the same if and only if h = 0 corresponding

to incidence in a plane perpendicular to the edge , or

n1 n3— + — - i = o .  (28)
n2 n4

Similarly, In the expressions (24) and (26) for rr 83~ the coefficients of

B are identical but those of A are now given by (27), leadIng again to the

requirement that (28) be satisfied to make them the same. Equation (28) is

7
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r

the impedance compatibility relation obtained by Dybdal et al (1971) as the

condition for the existence of discrete modes in a rectangular waveguide whose

opposite walls have the same anisotropic impedances . It is equivalent to

E~~ H = O

at the edge , and if it is satisfied

rr ’ A3 
= [Cr - 2ks (ks + An 1

)}{r’ - 2kc (kc + A~ 3 ) }  - 4 h2k2s2c2lA

- 2hk 2 A sc Cs (n 1 
- 1/ri2) - c (n 3 - 1/ri4)) B (29)

rr B3 = - 2hk2 A sc Cs (ri
1 

- i/n2) 
- C (ri

3 
- h 4)) A

+ [Cr - 2ks (ks + A /ri2
)}{r ’ - 2kc (kc + A /ri

4
) )  - 4 h2k2s2c2~~B.

(30)

The expressions (7) and (8) for U and V then constitute a valid solution wi th

the amplitudes A 1 an d B 1, I = 1 , 2, 3, defined by (17), (18), (20), (21), (29)

and (30). Since U and V and , hence , E
~ 

and H
~ 

are non-zero at the edge , the

components of the electric and magnetic currents perpendicular to the edge are

cont~nuous from one face to the other , but as a result of the boundary con-

ditions the component of the electric current parallel to the edge is discon-

tinuous unless n2 = and the same component of the magnetic current is

discontinuo us unless r-~1 
= r~3.

Our final remarks are for the case when the impedances are small. If

= I = 1 , 2, 3, 4

8
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where the c~ are of order unity and ii << 1 , the discrepancies between (23)

and (25) and (24) and (26) are 0(n
2). It follows that to 0(n) our plane wave

solution is valid regardless of the compatibility relation (28), and it is

now of interest to consider the form taken by the next higher order term for

small but arbitrary impedances .

SMALL IMPEDANCE SOLUTION

To obtain a solution which holds regardless of the relation (28), we

assume the following series expansions for U and V :

U (x , 
~ ~m~o

fm Urn (x , y) , V (x , y) = 

j0
n
m Vm (x, y) (31)

On substitut ing into the boundary conditions (4) and (5) and equati ng co-

efficients of like powers of n, we find

h - k = 
~ ~ 

A2 Vm l  ~ A
2 Um 

= - 

~2 [k 
m l  +h 

aV rn
l)

(y = 0)

h + k = - I C
3 

A
2 Vm l  ~ A Urn = - C

4 [k 
m l  

- h 
aV
m 1 }

(x = 0)

for m > 0 with U 1, V 1 0, and these can be expressed as

~ 
f~~~(x) y = 0, x > 0

Urn (x , y) = ( (32){
~ 

f~~~(y) x = O , y > O

9
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g~,~~(x) y = 0, x > 0

~~ 
Vm (x, y) 

= (33)

g(2)(y) x = 0, y > 0m

where n is the outward normal and

f~~~(x )  — 

1c
2 1k 

Ur n l  + 
Vm i

m ay h 
ax }~~~~

0 

(34)

f
(2) (y) = 

1C
4 

1 aum_ l 3Vm_ i
~~~ [k ax - h 

ay }~ 
(35)

x O

2 ~2 Vm l  a
2 Urn_ i

9W(x) = - 

~~ 
1c~ A4 Vm l  - £2 h £2 kh 

- 

= 

(36)
m kA

2 Vm i  ~2 U
lJ
~ 

. (37)g~~~(y) = - ~~~ [C 3 
A
4 Vm i  - e~ h2 

a 
ax 2 - 

axay
£4 kh

x = 0

The task has now been reduced to the solution of separate boundary value

problems for Urn and Vm~

Given a scalar field p (x, y) satisfying the wave equation (3), the field

at any point inside and on a closed contour L can be written ~s

q,(x , y)  = f [4~ ~
-~-i- - G 

~~~~~~~ J ds ’ (38)
L

where G is a two-dimensional Green ’s function . In the case ~, Urn It is

convenient to choose G = G5:

- ~ (H~~~(AR 1 ) 
- H~~~(AR2) 

- H~,~(AR3) + H~ ,,~(AR4))
•10
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with

2 1/2
2 

= ((x - x ’) + (y ; y I ) 2)

2 2 1/2
= + x ’ )  + (y ~ y ’) )

where ~~~ is the Hankel function of the first kind of order zero, so that

G5 vanishes on the surfaces x = 0 and y = 0. On applying (38) to the region

bounded by the lines y = 0 (x > 0), x = 0 (y > 0) and a quarter circle at

infinity , and imposing the boundary conditions (34) and (35), we have

Urn (x , ~
) = 

i ’~~
x 1 

~y ’O  
dx ’ + Jf

(2)(y u )  L1=0 dy ’

since the quarter circle yields no contribution. Hence

Um (x ,Y) =

- kff~~~
(x ’)(~~ 

H~~~{A~~~~ x
I)2 + y2J - ~~ H~~~[A 

/(x + x ’)~ + Y2J~~dx~

- iff
(2) (y I

)(A H~)[A/(Y - y ’) 2 + x2J - ~ H~~~[A it~ + y ’)2 + x2J~~dY
I

(39)

from which Urn can be computed knowing f~,~~(x) and f
(~~(y)•

For the partial field Vm the appropriate choice of G is G = Gh where

= 
~~(H Q (AR l ) 

+ H~~~(AR 2) + H~~~(AR3) + H~~~(AR 4)).

and using this and proceeding in an analogous manner to the above, we find

11
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Vm (x, ~ 
=

- ~
J
~~~~(x ’) (H [A ~~~~~~ x 1 ) 2 + y

2 }+ H~~ )[A/(X + x I )2 + YZJ)dx’

- ~~
fg

(2)
(y I ) 

(H~~~[Av ’&-~ y’)~ + x)~~ + H~~~[x~{Y + y ’)~ + xZJ
J

dy ’

(40)

which specifies Vm in terms of g~,~~(x) and g
(~~(y ).

The incident plane wave is given by (6), and since the boundary conditions

on the zero order fields are

aV
U0 

, -~~~~~O o n y O , x > O

Ii ,—~- = O  o n x = O , y > 0
o ax —

it follows immediately that

U0 (x , y) = A (e ”~’” 
+ ys) 

- ~~~~~~~ 
- ys) 

- ~~~~ 
- ys)~ e~~~~

” +

(41 )

V0 (x , y) = B (e~~~ ” 
+ ys) + ~~~~~~~ 

- ys) + ~~~~ 
- ys) + e~~~~ c 

+ vs))

(42)

We can now determine the boundary values for the first order fields. From

(34) and (35) wi th m = 1 ,

, .,

f ’11(x) = — .—
~~

——— (ks A + hc B) sin A xc

(2) 
4ie4

~~1 (y) = - --~-—— ( k c A —  hs B) sin A~~5

12



‘I

and when substitu ted into (39), we have (see A .3)

2 £ 2U1 (x, y) = - —i-— (ks A + hc B)(e1A 1
~~ 

+ ys) 
- e

_

~ ”~’” - Ys)
)

— hs B) (e’~’~’” 
+ys ) 

— e iA (xc .- ys )
) (43)

Similarly, for V1

(1)(X) = - T~~2 
khsc A + (~1 A2 + £2 h

2c2) B) cos Ax c

(2) (~) = ~(~4 khsc A - (
~3 A

2 + £4 h
2s2) B) COS AYS , 

-

and when substituted into (40), the result is (see A.5)

V 1 (x , y) = - 
th - 

~~2 khsc A + (
~1 A2 + £ 2 h2c2) B)(~

iA (xc + ys) + e~~~~~ c - Ys ))

+ ~ .?_ 
cC4 

khsc A - (
~3 A2 + £4 h

2s2) 8J~çe
iA(xC + ys) + eh~~

c - ys))

(44)

These serve to specify the boundary values for the second order fields.

From (34) and (35) wi th m = 2 ,

41
f~~~(x) —

~~~~~~ (kc~s (k
2 

- A 2c2) A + hc [C1 A
2 + £2 (k

2 
- A 2c2)] B)sin Axc

kA s

4c2
+ —r— ksc A + h (C 3 - e4S )  B) ~~~~~

(y) =f (2) 2 
(kc4c (k

2 
- A

2
S
2
) A - hs [C3 A 2 + E4 (k 2 - A 2s 2 )] B) sin Ays

kA

4C 4+ r (~2 ksc A - h (ci - ~2
C )  B)e~~~

13
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p

giving

U2 (x, y) =

= 
2c2 rk~2S (k

2 
- A2c2) A + hc [El A2 + £2 (k

2 
- A

2
c
2
)] 
B)(

A (
~~ 

+

kA 5 1... 2c (
- ~~~~~~~ 

- ~s))+ ~~~ ~kc 4c (k 2 
- A 2s2) A - hs [c3 A 2 + £4 (k

2 
- X2s2)] B)

4c (+ ys) 
- e~~~

’
~ 

- Ys )) + ksc A + h (C
3 

- £45
2) B) j 1 (x

, y; a)

4c4 
(

+ 
~~ ~~2 

ksc A - h (E l 
- c2c

2) B) J1 (y, x; 
- a)

where the function is defined in the Appendix. 
• As shown there , however ,

~y, x; - a) = eD
~
()

~ 
+ ys) 

- 

~1 
(x , y; a)

and U2 can therefore be written as

1J2 (x, y ) =

= 
2C

2 fkc2s (k
2 

- A 2C2) A + hc [c
~ 

A 2 + 62(k - A 2c2)] B)(~
ix(xc +

kA

- e IA
~~ 

- is )) + 
~~~~ (

~~~C (k
2 

- A2s2) A - hs [c3 A
2 + £4 (k

2 
- A 2s2

)] B)

4e4 (+ ys) 
- e~’~’~ 

- Ys))+ 
~~~~ 

ksc A - h (~1 - c2c
2) B) e

1
~~”~ 

+ ys)

4h
+ ~~~ ~ l~4 

+ t2t 3 
- c2c4 ) B ‘~1 (x, y; a) . (45)

14
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p

Similarly

g~~~(x) =

khsc [C l A
2 + £2 (k

2 
- A2c2)] A+ [(~1 A 2 + £ 2 h

2c2)2 + (c
2 

khsc)2] B)

cos A xc

- khsc - c2c2 ) A -[(~3 - c4s2 )(c i A2 + c
2 

h2c2) + £l C4 k
2s2] B)

e~~ 
xc

g%)(y) =

- 

~~~ 
khsc [e3 A

2 + £4 (k
2 

- A 2s 2)] A - [ (C
3 

A
2 + £4 h

2s2)2 + (
~ khsc)~] B)

~ cos A ys

+ 

~~ -(2 khsc (C 3 
- c4s2 )A + [(e 3 - c4s

2)(C1 A 2 + £ 2 h
2c2) + c

1
c
4 

k~s2] B)

e~~ ~ .

On substituting these Into (40) and using (A.4), (A.12), (A.l4) and (A.15),

we find

V 2 (x, y) =

k2A 2s2 (c2 khsc (c 1 A 2 + £ 2 (k
2 

- A 2c2 )] A + [(c
1 

A2 + £2 h2c2 )2 + (e
2 
khsc)2] B)

(e
1A

~~ 
+ ys) + e

1
~~~

” - is))

• 
• 

~~~~~~~~~~~~~~~~ 

~~: ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~



wavegu lde having two adjacent wal ls imperfectly conduct ing .

2

— 
SS_- — 5— 5~~~~~~~

•__’__•____________ -

- 

k2A2c2~~
4 kh sc [C

3 
A 2 4 c

~ 
(k 2 

- A 252)] A - [(C
3 

A 2 + £ 4 h2s 2 )2 
+ (~4 khsc)

2] B

+ ys) 
+ e~~~~

C - ys
))

+ ~~~ khs c (c3 - £45
2) A + [(c3 

- £4S
2
)(C 1 

A
2 

+ c2 
h2c2) + € 1 c4 k

2
s
2
] B)

~~~~ 
+ ys)

- 

~j~
- (c 1c~ 

+c2c3 -c2c4
) A J2 (x, y; a) (46)

wi th J2 defined in the Appendix. -

Since A = B = 0 implies a null solution , the last term in each of (45) and

(46) vanishes only if the impedance compatibility relation (28) is satisfied.

U2 and V2 then consist of three plane wave contributions , and the resulting

expressi ons for

are identical to the expansions through terms 0(n2) of the solution derived in

the previous section . If desired , highe r order terms can al so be obtai ned , and

Involve only the plane waves already present in U2 and V2. If (28) is not

satisfied , however, the character of the solution changes considerably. U2
and V2 now contain terms proportional to J1 and J2 respectively, and it is of

Interest to examine the solution in this  more general case.

DISCUSSION

The functions J1 (x, y; 
~

) and J2 (x, y; ci) satisfy respectively the

Integral equations

16
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1’ 3G
f (x , y) =J f (x ’ , y ’) ~-~ -ds ’

9-
and

g (x, y) = - f Gh ~~~~~~~~ 
g (x’ , y’) ds ’

where z is the contour consisting of the straight line segments y = 0, x > 0

and x = 0, y > 0. Each can be expressed (see Appendix) in terms of the function

F (~ ~
) 4ir fco sht + cos ~ ~~~~~ ~ dt (47)

which occurs in Kottler ’s (1923) solution for the diffraction of a plane wave

by a perfectly ‘black’ half plane . The integral is absolutely convergent if

Irn. -r > 0 and -it < < it , and has been discussed at length by Watson (1938),

Copson and Ferrar (1938) and Erd~lyi (1938a , b). It -is similar to the Fresnel

integral and can be expanded in a series of ‘cut’ Hanke l functions (Copson and

Ferrar , 1938). In addition ,

F (t , ~
) e t cos 

- sin ~fH
m (t) el t CO5~ dt) (48)

(Erd~lyi , 1938a), constituting a finite integral representation , but no analytic

eval uation of the integral has yet been achieved . For -t >> 1 the stationary

phase approximation to (47) is ,

F ( , 4’) - I/I e
i(r + it/4) tan

and for -r << 1 (48) shows

F ( , 4,) = ~1L. + o (t log ).

17
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From the expressions (A.9) and (A.13) for and J2 respectively in terms

of F( , u,), it follows imediately that on the line segment y = 0, x > 0

— iA X COS 3J2 - . . ix ~- e , -i——— - ix sin ~ e

whereas on the segment x = 0, y > 0

J1 = O  ,

and are also closely related and if J1 (x , y; a) = K Co , a) where o is
the cyl i ndrical polar coordinate , J2 (x, y; a) 

= K (it/2 - a, ~/2 - e). For

Ap >> 1 and e bounded away from a

- lAp cos (a — 0) H ‘ 
- 
— 

1 CA p + ii/4) sin 20
1 ~X , 

~~~‘ 
cij  e ~a Oi irAp 

e cos 2e - cos 2cz

- lAp cos (a — 

H ”  ‘ ~~~ 
•
~ ~~ + ~/4) sin 2oe 

~
a - o J _

/ ~~~~
e cos 2 o - c o s 2~

where H is the unit step function , showing that at large distances from the

edge , both functions have the appearance of an edge wave . For Ap << 1 , however ,

J 1 (x, y; ~
) - 1 — 2o/-~ , J2 (x, y; a) - 2a/ir .

The partial field V 2 Is therefore continuous from one surface of the wedge to
the other , but 1J

2 has a finite jump discontinui ty .

Partial fields Urn an d Vm of higher order than the second can be obtained
by the same method used to determine U2 and V2. and these turn out to be singular
at the edge , wi th the order of the singulari ty increasing wi th m. They also

-

~~~~~~~~

. 

~~~~~~~~~ • 
- -



involve functions which , though similar to an d J2, become more complicated

as m increases , and for this reason it does not seem likely that the field

expansions can be suniiied to arrive at an exact closed form solution of the

wedge problem. Nevertheless , it is evident that like the partial fields Urn
an d Vm for m > 2 , the exact solution must have a continuous angular spectrum.
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e 
___________________________APPENDIX: SOME INTEGRAL EVALUATIONS

There are two types of integra l that arise in connection wi th the partial

f iel ds U 1 and V 1 . The f i r s t  is

= fsin (A x ’ c) (
~ 

Hm (A4 - x I)2 + y2) - ~~ H~~~(A4x + x o)2 + Y
2))dx

l

(A.1)

which can be written as

Ii ~ x ’ c) ~~ H~~~(A4x - x ’)2 + y2) dx ’ .

We now insert the Fourier integra l representation

H~~~(x/fx - x ’) 2 + y2) = ~f:i~ 
(x - x ’) + i~ 

/2 - 2 

/ 2

valid for y > 0, where A is assume d to have a small  pos i t ive  imaginary part .

On reversing the order of integration and using the fact that

J_ i (~ A c) x ’ dx ’ = 2iT 
~ 

((i) ~~ Ac)

where 6 is the Dirac delta function , we have

= e ys (e lA XC e
_
~

A xc) . (A.3)

The second integra l is

12 = xsfcos (A x ’ c)(H~~ (x/(x - x ’) 2 + y2) + H~~~ (~~/(x + x ’)
2 + y2) dx l

(A. 4)

21



and in a similar manner it can be shown that

12 
= ~~ 

ys (e lA XC 
+ e~~~ 

xc) (A.5)

For inte grals that differ from the above in having only single exponentials

in the integrands the evaluation is more difficult. Consider

J1 (x , y; ~) =

- ~~ e1A X ’ c05a(~~ H~~~(X~~x - x ’)2 + y2) - ~~ H~~~(X4x + x ’)
2 + Y

2
))dX

u

(A.6)

where 0 < a < it . If we again insert the Fourier i ntegral representation (A.2),

the x ’ integration can be carried out immediately to give

T
e1 (x cos a ~ ~) X dx ’ = ___________

A cos a wC
and hence

J1 (x , y; a) = - 2 2 e~
’
~ 

F iy ~ 2 
- dw.

- A cos a
-

We now make the substi tution w = A cos ~ and write

X = p cos 0 , y = p sin 0

wi th 0 < o < it/2, so that

J 1 (x , y; a) = - 
i~f s~n 6 cos e~~’~ 

cos (~ 
- e) d~it cos 6 - c o s  a

where C is the path shown in Figure A- l. The stationary phase point Is ~ = e
and in a deformation of the path into the stationary phase contour S(e) the pole

22
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at 3 = a is captured if 0 < a. Hence

J (x, y; a) = e~”~ 
cos (a — o) H (a — o) — 

~
,/‘ sin (

~ 
+ o) cos (

~ 
+ e)

COS (
~ + o)  - cos2 a

e1~
’
~ 

C05
~~d~ (A.7)

where H denotes the unit step function.

The path S(O) is symmetrical about the origin of the 3 plane , and the method

employed by Cleninow (1951, p. 293) can now be used to reduce the integral to a

more elementary form. Replacing 3 by -
~~~ and then adding the resulting integral

to that in (A.7), we find after some manipulation

J1 (x , y; a) = ~~~ 
cos (a - e) H (a - o) + 

_ 
J
~~~sin (e+ ~ + a)

S (0

sin (o + a) 
— 

sin (o — a) sin (a — a)
cos ~ + cos (a + a) cos 3 + cos (a - a) + cos ~ - cos (a - a)

elA P cOS 3 d3  - (A . 8)

Each of these integrals is only a special case of the Kottler function F (it , 4,)

defined in (47). A simple change in the variable of integration shows

F (Ap 
‘ 

= 

~~fcos 3 + ~~ 1~ 
e~~’~ 

C05
~~~ci3

(0)

and wi th the restriction - ii < 
~
, < it , the first three integrals in (A.8) cor-

respond to the IdentificatIons 4, = it - 0 - a, 8 + a and 8 - a respectively.
For the fourth integral 

~‘ 
= it - e + a according as a a respectively, and

since (48) implies

F (~p , it - a + a) - F(Ap , - it - a + ci) e1” C05 (a - a)

23
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i t fol low s that

J1 (x, y; a) =

F (Ap , it — 0 — a) — F (Ap , e + a) - F (Ap , e - a) + F (Ap , it - 0 + a).

(A . 9)

On interchanging x and y in (A.6) and , at the same time , replacing a by

it/2 - a, we have

‘
~l ~

y, x; ir/2 — a) = 
-

- 

~~~~

ixy ’ 5iflaI~ H~~~(A ~~y - y’)2 + x2) - ~~ H (1 )
(A~~~ + y ’)2 + ~~~ dy ’

0 ~X 0

0

= F (Ap , 0 + a) — F (Ap , it — 0 — a) — F (Ap , a — a) + F (A p  , it + 0 — a)

(A.1O)

an d hence , from (48),

IAp cos (a - a) (A.l l)J1 (x, y; ci) + J1 (y, x; ir/2 - a) = e

The only integral still to be evaluated is the analogue of (A.4) wi th the

cosine factor replaced by a single exponential . If

‘~2 (x, y; a) =

~ ~~ ~fe
th(’ cosa

~~
(i)(A/(X - x ’) 2 + y2) + H~~~(A4x + x~ )Z + y2)) dx ’ ,

0
(A.l2)

24
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insertion of the Fouri er integral representation of the Hankel function gives

‘~2 (x , y; c’.) =

ix 2isin rz cos ci i~x + i y .~
2 - w 2 dw

- 2 
- A 2 cos 2 ~ 

e 
/2 �

0 A

ixp cos (~ 
- a) i I’ sin ~ cos a iA~ Co56= e H (~ - a) - 

4(0) ~~~ ~~~
+ 0)  - cos 2 

e

and by a process similar to that used above , we find

J2 (x, y; ~) =

~Ap cos (~ - a )  H ‘ ‘ ~ I r sin (a + cc) 
— 

s i n (a +e ‘a - 
O i  

- 

~ ,,, ~~ - cos (0 + ~~ + cos (a + 4S(O)

+ sin (8 - c)~ - 
sin (a - a) ‘

\e
IAP cos 3 d3cos ~ + cos (a - a) cos 3 - cos Ce - a)J

Hence

J2 (x,y ;  a) =

— F (Ap , it — — a) + F (Ap , a + a) — F (Ap , 8 — a) + F (Ap , it — 0 + a).

(A.l3)

With 0 and a replaced by it/2 - a and ir/2 - a respectively,

‘~2 (y, x; ir/2 — a) =

A c~s sin ci(H~~~(A ~~ - y ’) 2 + x2) + H~~~(A4y + y ’)2 + x2
)Jdy I

— F (Ap , e + ci) + F (Ap , ii — e — a) — F Cx p , a — a) + F (Ap , it + e — ci)

25 (A. 14)
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and (48 ) then implies

‘~2 (x, y; ~) + J2 (y, x; w/2 - a) = e 1
~~ 

cos (a - e) (A. 15)
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FIG URE CAPTIONS

Figure 1: The geometry .

Figure A-l: Path of integration in complex ~ p lane .
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